Vehicular automation involves the use of mechatronics, artificial intelligence, and multi-agent system to assist a vehicle's operator. These features and the vehicles employing them may be labeled as intelligent or smart. A vehicle using automation for difficult tasks, especially navigation, may be referred to as semi-autonomous. A vehicle relying solely on automation is consequently referred to as robotic or autonomous. After the invention of the integrated circuit, the sophistication of automation technology increased. Manufacturers and researchers subsequently added a variety of automated functions to automobiles and other vehicles.
One of the current limitations for vehicular automation is the electrical power required to run the processors.
Video Vehicular automation
Ground vehicles
Ground vehicles employing automation and teleoperation include shipyard gantries, mining trucks, bomb-disposal robots, robotic insects, and driverless tractors.
There are a lot of autonomous and semi-autonomous ground vehicles being made for the purpose of transporting passengers. One such example is the free-ranging on grid (FROG) technology which consists of autonomous vehicles, a magnetic track and a supervisory system. The FROG system is deployed for industrial purposes in factory sites and has been in used since 1999 on the ParkShuttle, a PRT-style public transport system in the city of Capelle aan den IJssel to connect the Rivium business park with the neighboring city of Rotterdam (where the route terminates at the Kralingse Zoom metro station). The system experienced a crash in 2005 that proved to be caused by a human error.
Applications for automation in ground vehicles include the following:
- Vehicle tracking system system ESITrack, Lojack
- Rear-view alarm, to detect obstacles behind.
- Anti-lock braking system (ABS) (also Emergency Braking Assistance (EBA)), often coupled with Electronic brake force distribution (EBD), which prevents the brakes from locking and losing traction while braking. This shortens stopping distances in most cases and, more importantly, allows the driver to steer the vehicle while braking.
- Traction control system (TCS) actuates brakes or reduces throttle to restore traction if driven wheels begin to spin.
- Four wheel drive (AWD) with a centre differential. Distributing power to all four wheels lessens the chances of wheel spin. It also suffers less from oversteer and understeer.
- Electronic Stability Control (ESC) (also known for Mercedes-Benz proprietary Electronic Stability Program (ESP), Acceleration Slip Regulation (ASR) and Electronic differential lock (EDL)). Uses various sensors to intervene when the car senses a possible loss of control. The car's control unit can reduce power from the engine and even apply the brakes on individual wheels to prevent the car from understeering or oversteering.
- Dynamic steering response (DSR) corrects the rate of power steering system to adapt it to vehicle's speed and road conditions.
Research is ongoing and prototypes of autonomous ground vehicles exist.
Cars
Extensive automation for cars focuses on either introducing robotic cars or modifying modern car designs to be semi-autonomous.
Semi-autonomous designs could be implemented sooner as they rely less on technology that is still at the forefront of research. An example is the dual mode monorail. Groups such as RUF (Denmark) and TriTrack (USA) are working on projects consisting of specialized private cars that are driven manually on normal roads but also that dock onto a monorail/guideway along which they are driven autonomously.
As a method of automating cars without extensively modifying the cars as much as a robotic car, Automated highway systems (AHS) aims to construct lanes on highways that would be equipped with, for example, magnets to guide the vehicles. Automation vehicles have auto-brakes named as Auto Vehicles Braking System (AVBS). Highway computers would manage the traffic and direct the cars to avoid crashes.
The European Commission has established a smart car development program called the Intelligent Car Flagship Initiative. The goals of that program include:
- Autonomous Cruise Control
- Lane departure warning system
- Project AWAKE for drowsy drivers
There are plenty of further uses for automation in relation to cars. These include:
- Assured Clear Distance Ahead
- Adaptive cruise control
- Adaptive headlamps
- Advanced Automatic Collision Notification, such as OnStar
- Intelligent Parking Assist System
- Automatic Parking
- Automotive night vision with pedestrian detection
- Blind spot monitoring
- Driver Monitoring System
- Robotic car or self-driving car which may result in less-stressed "drivers", higher efficiency (the driver can do something else), increased safety and less pollution (e.g. via completely automated fuel control)
- Precrash system
- Safe speed governing
- Traffic sign recognition
- Following another car on a motorway - "enhanced" or "adaptive" cruise control, as used by Ford and Vauxhall
- Distance control assist - as developed by Nissan
- Dead man's switch - there is a move to introduce deadman's braking into automotive application, primarily heavy vehicles, and there may also be a need to add penalty switches to cruise controls.
Following recent developments in autonomous cars, shared autonomous vehicles are now able to run in ordinary traffic without the need for embedded guidance markers. So far the focus has been on low speed, 20 miles per hour (32 km/h), with short, fixed routes for the "last mile" of journeys. This means issues of collision avoidance and safety are significantly less challenging than those for automated cars, which seek to match the performance of conventional vehicles. Aside from 2getthere ("ParkShuttle"), three companies - Ligier ("Easymile EZ10"), Navya ("ARMA" & "Autonom Cab") and RDM Group ("LUTZ Pathfinder") - are manufacturing and actively testing such vehicles. Two other companies have produced prototypes, Local Motors ("Olli") and the GATEway project.
Beside these efforts, Apple is reportedly developing an autonomous shuttle, based on an vehicle from an existing automaker, to transfer employees between its offices in Palo Alto and Infinite Loop, Cupertino. The project called "PAIL", after its destinations, was revealed in August 2017 when Apple announced it had abandoned development of autonomous cars.
Trials
A large number of trials have been conducted since 2016, with most involving only one vehicle on a short route for a short period of time and with an on board conductor. The purpose of the trials has been to both provide technical data and to familiarize the public with the driver less technology.
Planned utilisation
In January 2017 it was announced the ParkShuttle system in the Netherlands will be renewed and expanded including extending the route network beyond the exclusive right of way so vehicles will run in mixed traffic on ordinary roads. The upgrade will occur after 2018 when the current operating concession expires.
Parkshuttle plans deployment of 25 vehicles in 2020 that will perform fully autonomous shuttle services to and from Bluewaters Island in Dubai. A successful climate test was completed in November 2017.
In December 2016 the Jacksonville Transportation Authority has announced its intention to replace, within five years, the Jacksonville Skyway monorail with driverless vehicles that would run on the existing elevated superstructure as well as continue onto ordinary roads. The plan is to keep the current system running while preparing for the new technology
Trucks
The concept for autonomous vehicles has also been applied for commercial uses, like for autonomous or nearly autonomous trucks. As recorded in June 1995 in Popular Science Magazine, self-driving trucks were being developed for combat convoys, whereby only the lead truck would be driven by a human and the following trucks would rely on satellite, an inertial guidance system and ground-speed sensors. Caterpillar Inc. made early developments in 2013 with the Robotics Institute at Carnegie Mellon University to improve efficiency and reduce cost at various mining and construction sites. Companies such as Suncor Energy, a Canadian energy company, and Rio Tinto Group were among the first to replace human-operated trucks with driverless commercial trucks run by computers. In April 2016, trucks from major manufacturers including Volvo and the Daimler Company completed a week of autonomous driving across Europe, organized by the Dutch, in an effort to get self-driving trucks on the road. With developments in self-driving trucks progressing, U.S. self-driving truck sales is forecasted to reach 60,000 by 2035 according to a report released by IHS Inc. in June 2016.
Waymo Semi
In March 2018, Waymo, the automated vehicle company spun off from Google parent company Alphabet Inc., announced it was applying its technology to semi trucks. In the announcement, Waymo noted it would be using automated trucks to move freight related to Google's data centers in the Atlanta, GA area. The trucks will be manned and operated on public roads.
Uber Semi
In October 2016, Uber completed the first driverless operation of an automated truck on public roads, delivering a trailer of Budweiser beer from Fort Collins, CO to Colorado Springs. The run was completed at night on Interstate 25 after extensive testing and system improvements in cooperation with the Colorado State Police. The truck had a human in the cab but not sitting in the driver's seat, while the Colorado State Police provided a rolling closure of the highway. At the time, Uber's automated truck was based primarily on technology developed by Otto, which Uber acquired in August 2016. In March 2018, Uber announced it was using its automated trucks to deliver freight in Arizona, while also leveraging the UberFreight app to find and dispatch loads.
Embark Semi
In February 2018, Embark Trucks announced it had completed the first cross-country trip of an automated semi, driving 2,400 miles from Los Angeles, CA to Jacksonville, FL on Interstate 10. This followed a November 2017 announcement that it had partnered with Electrolux and Ryder to test its automated truck by moving Frigidaire refrigerators from El Paso, TX to Palm Springs, CA.
Tesla Semi
In November 2017 Tesla, Inc., owned by Elon Musk, revealed a prototype of the Tesla Semi and announced that it would go into production. This long-haul, electric semi-truck can drive itself and move in "platoons" that automatically follow a lead vehicle. It was disclosed in August 2017 that it sought permission to test the vehicles in Nevada.
Trains
An examples of an automated trains is the Docklands Light Railway in London.
Automated guided vehicle
An automated guided vehicle or automatic guided vehicle (AGV) is a mobile robot that follows markers or wires in the floor, or uses vision, magnets, or lasers for navigation. They are most often used in industrial applications to move materials around a manufacturing facility or warehouse. Application of the automatic guided vehicle has broadened during the late 20th century.
Maps Vehicular automation
Aircraft
Aircraft has received much attention for automation, especially for navigation. A system capable of autonomously navigating a vehicle (especially aircraft) is known as autopilot.
Watercraft
Autonomous boats can provide security, do research, or perform hazardous or repetitive tasks (such as guiding a large ship into a harbor or transporting cargo).
Submersibles
Underwater vehicles have been a focus for automation for tasks such as pipeline inspection and underwater mapping.
See also
- Intelligent speed adaptation
- Intelligent Transportation System
- PReVENT
- Uncrewed vehicle
- Transit media
References
External links
- European Commission Intelligent Car website
- U.S. Department of Transportation - Intelligent Transportation Systems Joint Program Office website
Source of the article : Wikipedia